A Bivariant Chern Character for Families of Spectral Triples

نویسنده

  • Denis PERROT
چکیده

This paper is an attempt to provide a JLO-type formula for a bivariant Chern character defined on “families of spectral triples”. Such families should be viewed as an algebraic version of unbounded Kasparov bimodules. The Chern character is built from the exponential of the curvature of a superconnection, leading to a heat kernel regularization of traces. We work within the Cuntz-Quillen formalism for bivariant cyclic cohomology.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chern Character, Hopf Algebras, and Brs Cohomology

We present the construction of a Chern character in cyclic cohomology, involving an arbitrary number of associative algebras in contravariant or covariant position. This is a generalization of the bivariant Chern character for bornological algebras introduced in a previous paper [35], based on Quillen superconnections and heat-kernel regularization. Then we adapt the formalism to the cyclic coh...

متن کامل

Retraction of the Bivariant Chern Character

We show that the bivariant Chern character in entire cyclic cohomology constructed in a previous paper in terms of superconnections and heat kernel regularization, retracts on periodic cocycles under some finite summability conditions. The trick is a bivariant generalization of the Connes-Moscovici method for finitely summable K-cycles. This yields concrete formulas for the Chern character of p...

متن کامل

Chern Character for Totally Disconnected Groups

In this paper we construct a bivariant Chern character for the equivariant KK-theory of a totally disconnected group with values in bivariant equivariant cohomology in the sense of Baum and Schneider. We prove in particular that the complexified left hand side of the Baum-Connes conjecture for a totally disconnected group is isomorphic to cosheaf homology. Moreover, it is shown that our transfo...

متن کامل

Bivariant Chern Character and Longitudinal Index

In this paper we consider a family of Dirac-type operators on fibration P → B equivariant with respect to an action of an étale groupoid. Such a family defines an element in the bivariant K theory. We compute the action of the bivariant Chern character of this element on the image of Connes’ map Φ in the cyclic cohomology. A particular case of this result is Connes’ index theorem for étale grou...

متن کامل

Bivariant Chern Character and the Longitudinal Index Theory

In this paper we consider a family of Dirac-type operators on fibration P → B equivariant with respect to an action of an étale groupoid. Such a family defines an element in the bivariant K theory. We compute the action of the bivariant Chern character of this element on the image of Connes’ map Φ in the cyclic cohomology. A particular case of this result is Connes’ index theorem for étale grou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002